TGF and PTHrP Control Chondrocyte Proliferation by Activating Cyclin D1 Expression
نویسندگان
چکیده
Exact coordination of growth plate chondrocyte proliferation is necessary for normal endochondral bone development and growth. Here we show that PTHrP and TGF control chondrocyte cell cycle progression and proliferation by stimulating signaling pathways that activate transcription from the cyclin D1 promoter. The TGF pathway activates the transcription factor ATF-2, whereas PTHrP uses the related transcription factor CREB, to stimulate cyclin D1 promoter activity via the CRE promoter element. Inhibition of cyclin D1 expression with antisense oligonucleotides causes a delay in progression of chondrocytes through the G1 phase of the cell cycle, reduced E2F activity, and decreased proliferation. Growth plates from cyclin D1–deficient mice display a smaller zone of proliferating chondrocytes, confirming the requirement for cyclin D1 in chondrocyte proliferation in vivo. These data identify the cyclin D1 gene as an essential component of chondrocyte proliferation as well as a fundamental target gene of TGF and PTHrP during skeletal growth.
منابع مشابه
TGFbeta and PTHrP control chondrocyte proliferation by activating cyclin D1 expression.
Exact coordination of growth plate chondrocyte proliferation is necessary for normal endochondral bone development and growth. Here we show that PTHrP and TGFbeta control chondrocyte cell cycle progression and proliferation by stimulating signaling pathways that activate transcription from the cyclin D1 promoter. The TGFbeta pathway activates the transcription factor ATF-2, whereas PTHrP uses t...
متن کاملZfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes.
In the growth plate, the interplay between parathyroid hormone-related peptide (PTHrP) and Indian hedgehog (Ihh) signaling tightly regulates chondrocyte proliferation and differentiation during longitudinal bone growth. We found that PTHrP increases the expression of Zfp521, a zinc finger transcriptional coregulator, in prehypertrophic chondrocytes. Mice with chondrocyte-targeted deletion of Zf...
متن کاملPTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation.
In chondrocytes, PTHrP maintains them in a proliferative state and prevents premature hypertrophy. The mechanism by which PTHrP does this is not fully understood. Both Runx2 and Runx3 are required for chondrocyte maturation. We recently demonstrated that cyclin D1 induces Runx2 protein phosphorylation and degradation. In the present studies, we tested the hypothesis that PTHrP regulates both Ru...
متن کاملThe cyclin D1 and cyclin A genes are targets of activated PTH/PTHrP receptors in Jansen's metaphyseal chondrodysplasia.
Jansen's metaphyseal chondrodysplasia (JMC) is an autosomal dominant disorder characterized by short-limbed dwarfism, delayed ossification, and hypercalcemia. Activating mutations in the PTH/PTHrP receptor have been identified as the molecular cause of this disorder. Although these mutations have been shown to increase cAMP accumulation, little is known about possible target genes of the downst...
متن کاملIdentification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes.
Endochondral bone growth is regulated by the rates of chondrocyte proliferation and differentiation. However, the intracellular mechanisms regulating these processes are poorly understood. Recently, interruption of the gene encoding the transcription factor activating transcription factor 2 (ATF-2) was shown to inhibit proliferation of chondrocytes in mice [Reimold, A. M., et al. (1996) Nature ...
متن کامل